The Atavism

Tuesday, March 1, 2011

Ken Ring can't predict earthquakes either

The New Zealand media have done a remarkably good job of covering the Christchurch earthquake. TV, newspapers and radio have all struck the difficult balance between the country’s desperate need to understand what happened on the 22nd and how people are coping with the right that each victim the quake has to privacy in such a terrible time. The media have also shown great restraint with respect to one particular story. Ken Ring, the astrological weather forecaster, claims to have predicted the earthquake. I think Ring, with all his calculations and post-hoc explanations, is the very embodiment of what Richard Feynmann called “cargo cult science” - someone who does some of the things scientists do, but fails in the most defining characteristic by not honestly testing his theories against data. I’ve had a little fun at his expense before, but, really; as much as it makes me sad that we live in a world in which Ken Ring can sell his weather forecasts and appear as an “expert” on anything in the media, the worst thing his almanac does is take money from people. In the wake the earthquake Ken Ring has done something much more serious. While thousands of people are devastated by a natural disaster, and terrified about what might happen next, Ken Ring claims to have predicted the earthquake of the 22nd and that a much worse one is due in March. So, let's do what Ring fails to and test his methods against reality.

If Ring had really made an isolated and specific prediction that a destructive earthquake would strike Christchurch on February the 22nd then he might be worth listening to. His claim revolves around this post from his website a little more than a week before the event. Here's the quotes he'd like you to pick out from that post:

The window of 15-25 February should be potent for all types of tidal action, not only kingtides but cyclone development and ground movement.

Over the next 10 days a 7+ earthquake somewhere is very likely

You might quibble that the Christchurch quake, at magnitude 6.3, was about 5 times less powerful than the M7 event he'd predicted - but I don't think anyone in Christchurch wants to argue about how strong their quake was. On the face it, it really does look like an amazing coincidence: Ring predicted a quake and it happened. But there is more to it than that, I've been through his site and Ring has also predicted earthquakes for, at least, the 24th of September, the 1st and 7th of October the first week in November, the 20th to the 27th of January, the 1st to the 5th and 19th to the 25th of March and the 17th of April. In fact, in one post, giving him the +/- one day he needs in order to claim he predicted the February 22nd quake , he paints more than half of the time between the start of January and the end of March as earthquake risk:

You can add a fair few false negatives to those false positives. In October he claimed the aftershock sequence would die down, missing the major rumble on boxing day and several times he declared that it was unlikely Christchurch would be face another major quake (tragically wrong).

Thanks to the way our brains work, we generally struggle to evaluate theories of causation and claims of prediction fairly. We are too impressed by occasional "hits" and tend to forget the many "misses" which outweigh them. If we want to be rigorous, how should we react to hearing about Ring's "hit" given the litany of "misses" I list above? As it happens there is a theorem for that. Bayes theorem is one of the most important little pieces of maths going around, because it tells us how to update our beliefs about a given question in light of new evidence, and that's exactly what we should be trying to do if we want to lead a skeptical life. It is maths, but it's not too scary. I'm the sort of person that loses contact with scientific papers as soon as 'Σ's and '∫'s start turning up, so you know if I'm writing this , you can follow it. Before we start, we need to define a couple of terms. Let's call P(KR) the probability Ken Ring can predict earthquakes and P(Prediction) the probability that Ken Ring would have successfully predicted this earthquake. From that we want to calculate how probable the claim "Ken Ring can predict earthquakes" is given his successful prediction, well call that P(KR|Prediction). Once we have those defined it's just a little 3rd form algebra:

P(KR|Prediction) = P(Prediction|KR) * P(KR)

So, how are we going to replace those terms with numbers? For now, let's not be one of those close minded skeptical types, ignore how eccentric Ring's methods and takes the evidence as it stands by saying P(KR) is 50%. P(Prediction|KR) is the probability that Ring would have predicted this quake if his methods work. You might be tempted to says this is 100%, but remember, he missed the Boxing Day aftershock and he's repeatedly said Christchurch was unlikely to be hit again, so he's not immune to false negatives either, I'll be generous and give him 90%. The really interesting bit in Bayes Theorem is the bottom term P(Prediction). If we are being agnostic about Ken Ring's abilities then we need to estimate this with regard to both the possibility his method has something going for it and the possibility that it doesn't. We've already said that Ring has an 90% chance of predicting an earthquake if his methods work, what's his chance of 'successfully' predicting a quake even if his methods don't work? This is the most important question you should ask yourself about his claims and it's where all those false alarms come in. Given the 'calendar' above, Ring would have claimed to have predicted the quake if it fell on any of half of the days between January and March. His prediction for February was a little more specific than that, but when you read the post it's still quite vague: "somewhere", "in the ring of fire", "withing 500km of the Alpine fault". I'm going to say, given the huge number of predictions he's made, there was about a 30% chance any day that had an earthquake would have been one Ring had previously predicted. To get P(Prediction) we have to balance each scenario like this:

Now, when we put the numbers in like so...

P(KR|Prediction) = 0.9 * 0.5

...we end up with P(KR|Prediction) being 75%. Ring's successful prediction still supports the case that his methods work, but it's hardly the decisive piece of information that allows us to say once and for all that he knows what he's doing. You almost certainly want to put different numbers than I did in that equation, and you should. The idea is not to convince you a particular value is the right one, but to show you how including those false positives in our assessment of his claim changes the way we update our ideas about it and, by extension, how much stock we should put in his future predictions. There is a Bayesian calculator here for anyone that wants to play around with other numbers, over there P(H) is what we called P(KR), P(D|H) is P(Prediction|KR) and P(D|'H) is the probability Ken Ring got it right by mistake (the one I gave 30%).

Skeptics are often accused of being closed minded for sticking to scientific orthodoxy in the light some piece of evidence or other: "If you would just let this evidence stand by itself you'd see my theory is true!". Assessing any evidence by itself, without our background of knowledge on a topic, is not being open minded - it's being willfully ignorant. When we want to compare one theory to another we should use all the evidence available to us, and that includes what we know about how the world works. Ring thinks earthquakes happen when the moon makes its closest approach to the earth (called perigee) and around full and new moons. This next sentence really pains me, but here goes. His theory is not 100% lunacy. The phases of the moon have no effect on the earth [whoops, as pointed out in comments, they kind of do, since they correlate with moons position relative to the sun and contribute to tides, this was included in the models/charts below so doesn't change their conclusions], but the position of the moon in its orbit just might. As every schoolchild knows, the moon exerts a tidal force on the planet and there really are "land tides", tiny swells and lulls in the crust of the earth analogous to the ocean's tides, that ebb and flow through the day. It's just possible that a fault that has been loading up with pressure for hundreds of years is more likely to give way when then moon is close and the tidal forces are stronger. But think about that for even a second and the problem becomes clear. Even if the moon is sometimes the straw that breaks the camels back at a particular fault, you couldn't use the moon to predict an earthquake unless you already new a fault was about to go, i.e., the moon could only predict earthquakes when you could already predict an earthquake!

Ken Ring get's a bit touchy about scientists dismissing his theories out of hand, so let's look at some data. I actually asked Ring for some help with this, but he is yet to answer my email. Luckily, since the September 4th earthquake Paul Nicholls from Canterbury University has been plotting the intensity of the aftershock sequence. He's also plotted the two lunar cycles Ring thinks are responsible for the strength of earthquakes: the lunar distance and the moon's phase. In many ways, this is the data-set in which we are most likely to find support for Ring's ideas. We know for a fact that the faults around the Canterbury plains are going to be under stress while the land sorts itself out after the upheaval in September. If the moon really was pushing already loaded faults past their breaking point we'd expect to see it in this data. Usually the most important statistical test you can perform on a data-set is having a look at it. This is Paul's plot from last night, the slimmer of the two waves on the top represents moons orbit (troughs are perigee, the point Ring thinks is most dangerous) and the larger is the moon's phase (the troughs are new moons).

If you can see any correlation between either of the lunar cycles you're doing a lot better than me. I decided to dig a littler further, and plot the intensity of each day's activity against each of the lunar cycles. First the phases of the moon. Remember, Ring thinks new and full moons are the most dangerous, so we expect a curved relationship higher at either end of the x-axis. We find no such thing (in fact, if anything, it's more dangerous between the new and the full moon):

How about the distance between the earth and the moon? This is the one that makes just a little scientific sense:

This time the relationship at least goes the right way, the quakes seem to be, on average, more powerful when the moon is close. In fact, when you put this data into a model that factors in the general tailing off in earthquake activity following the initial quake, the distance between the moon and the earth is a statistically significant variable with regard to the energy released. And there lies an incredibly important point. "Statistically significant" means unlikely to happen if the null hypothesis (in this case "the moon doesn't effect earthquakes at all") was true, it doesn't mean the result is "powerful", "meaningful", or even "capable of explaining a great deal of the variation in the data". As is often the case, we didn't really believe our null hypothesis to start with, so it's no surprise a large data-set found a significant relationship. But the actual effect of the moon is tiny, it explains about 2% of the variation in the data. The feebleness of the moon as a predictor is obvious when you look at the graph - there are plenty of days when the moon is close and there was not much energy released and, equally, there's a whole lot of days when the moon was far away and there were still magnitude 5 quakes. The moon might well be having an effect on intensity of earthquakes from day to day, but if it can barely explain any of the variance in this data-set, one that was almost designed to test Ring's theories in the best light, how could it predict an earthquake? It can't.

Let's get back to our calculation, last time we started with P(KR) at 50%. I hope you'll agree, having seen the data, that Ken Ring's methods are not the least bit plausible. I going to be outrageously generous and say there's a one in one thousand chance that he can predict earthquakes, so let's plug that into Bayes Theorem, remembering to update P(Prediction) for this new value too:

P(KR|Prediction) = P(Prediction|KR) * P(KR)
= 0.9 *0.001

Which gives us a value of 3 in one thousand. Again, you'll want to put different numbers into the equation, but there's a really important point here. Whenever we hear evidence for some new claim, "a vaccine caused my child's autism", "light behaves as a particle and a wave", "Ken Ring can predict earthquakes (and another one's coming)", we should use that evidence to update our prior knowledge of the world. Sometimes, like the outlandish claim that light can be a particle or a wave depending on how you look at, the evidence will be enough to completely change the we think, more often it will hardly make a blip. I think we can put Ken Ring firmly in the "hardly a blip" category: once you see how implausible his methods are you realise you'd need incredible evidence to believe his predictions and once you see his run of false positives you realise that his "prediction" of last week's earthquake doesn't meet that standard.

The people of Christchurch desperately need information. In the next few weeks they want to know if they'll have to face the terror of last Tuesday again and once they city has pulled itself back up they'll want to understand the future risks for the city. In a climate of such desperation people have a duty to provide only verifiable information and to explain that information's limitations. That's exactly what scientist from GNS and Canterbury University have done when they've spoken to the media. Ken Ring, who lambasted GNS for scaring people with a "knee jerk" comment that a magnitude 6 aftershock could be expected after the September earth quake, has not lived up to that duty and I really hope no one takes him seriously.

Note: I know this is a topic people will want to comment on. I'm writing a PhD at the moment and really can't take time to moderate a comment thread. I'm happy to allow comments, but don't expect instant replies today, or(at sciblogs) for comments to clear moderation straight away.

The data I used for my graphs was scraped from Paul Nicholls site, I chucked it up on google docs for anyone that's interested. I've also uploaded the R code I used to plot/analyse the data - this is an open access debunking! (BTW, did you know both R and the ggplot library I used to make those graphs were developed by New Zealanders? We grow good geeks here.)

Labels: , , ,

Posted by David Winter 10:19 AM


Excellent work David! Thank you so much for cutting into what I know must be a busy schedule to throw some light on the flimsiness of Ring's 'predictions'. There's been too much emotion around this topic (I know I've been very frustrated with him - possibly exaggerated by the fact that I feel helpless) and it's good to see a thorough refutation along with easy-to-understand diagrams.

Nice work.
If the field 'lunar' in the data spreadsheet refers to % of lunar cycle then there is a relationship between the number/freq of quakes and the lunar cycle. This is prob cos most of the quakes in the dataset are low magnitude. A relationship between tides and low mag quakes has been shown by research, but not for quakes of > 4 mag.

PS I hope K_Ring doesn't use this post out of context!
Hi anon,

Thanks for the comment, the idea of showing the data was to have others play with it. "lunar" refers to the mean percentage of the moon visible during that day (so close to 0 is a new moon).

I think it would be obvious what Mr Ring was up to if he tried to extrapolate from "increased frequency of small quakes" to "chance of massive quake", but don't suppose that would stop him!
...and there is a MASSIVE divide in logic to predicting the (tiny) increased chances anywhere on Earth, and a very specifically one in Christchurch.

The John Campbell episode is blowing up on facebook threads at the moment (as I'm sure the blogsphere) and I've been at the 'public understanding of science' side of the debate against what I can only call as "hippy wishy washyness" - and unfortunately I'm feeling like a lone voice. Hey, I'm a hippy at heart - just not logic.
Great, now i feel can sleep easy. Have been panicking since reading ken rings websites. Thanks for enlighting us on the subject, i will pass this on to others. Whew.
Thanks again for comments guys,


Keep fighing the good fight - I was worried no one would read this (too long...) and now it's had 13 000 hits over at sciblogs, so there are people that want to know the truth!


Happy to help, hope everyone up there in CHCH is starting to return to a little bit of normalcy
how about a new moon at close proximity to the earth? , with the new and full moon, does it look like there are clusters of quakes?
Hey anon,

I didn't really talk about in the post (too much maths already!) but I looked at some models where the lunar distance and the phase of the moon interacted. There was no significant interaction, and when I did model selection to chose a model that described the data well without adding too many variables the interaction was one of the first to be thrown out.
Thanks David. Its great to have a scientific view of the information, that has be used to create terror among Chch people.
Do you have any information regarding the expected release of energy that seimologists were talking about after the September quake? They kept saying even with all the aftershocks we were experiencing the energy wasn't balancing out??
What is the status now after the February quake??
Hi Sarah,

I don't want to pass myself off as a seismologist, but I gather from reading GNS statements that the feb. quake will have its own aftershock sequence since it will have shaken up various faults but equally they overall aftershock sequence should be easing off.

the quakes were on diferent faults. the rumblings of the second faults pre-shocks was potentially confused with after-shocks?
I heard of Ken Ring some years ago relating to long range weather forecasting, but did not give him a second thought, until JC's, abysmal attempt at an interview. Which was pretty much a case of JC accusing Ken for flawed research whilst doing none of his own. Then apologizes for not leaving his heart out of it . Should have been an apology for not bringing his head into it.

In any event if you are interested "Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data"

Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Sad that so many an be misled by Ken Ring and the chinese whispers. We have to use science or at least turn to this for answers. We become helpless sheep if we believe a fortune teller - what is the world coming to. If you ask most people who believe they have no idea of his predictions and have only heard 3rd hand and embelished the story even more. Great stuff David I enjoyed the article - and you aren't even charging us for this information!!

Thanks, that's one of many papers that show, even if the tides are triggering quakes, there's no useful way to turn that correlation around and predict quakes.


Now there's an idea, maybe I should start selling an almanac describing how to deal with outre claims
Hi David

Piers Corbyn is another one who claims high rates of success in predicting weather and earthquakes, and who also has a vocal following. It seems that someone just has to say "accuracy of n%" and people tend to believe it.

Has anyone done a prediction-vs.-actual comparison on his claims, similar to what you've done here?
5.1 on the 20th, so what do you say now? fluke?
Fluke? If their had been a destructive quake of the sort Ring was predicting yesterday that would been a fluke. Another large-ish aftershock in this aftershock sequence is... well, nothing really
Yes, fluke. Isn't there just a slight difference between a 7 plus and a 5.1 quake?

Were the ones in Twizel predicted, or would they just have served as backup confirmation if nothing had happened in Christchurch last night?
As a professional astrometeorologist - yes a scientist, and a mundane astrologer David, I suggest that at the age of 29 you would consider the fact that you are not qualified to determine what is 'science' and what is not.

If not for Astrology, the very discipline you have taken to practice, would not exist.

So show some respect before you go around mocking that which you are not familiar.

I forecasted ENSO and Japan's Earthquake in advance using astrological principles.

I also suggest that you learn before you go on pontificating about matters you clearly are not qualified to pontificate on.

Astrologers such as Ptolemy, Newton, Brahe and Kepler, using your terms, would not be called 'scientists' since they practiced the same astrological principals in forecasting events and causes in the natural world.

You've got much more to learn David - and you do not do that by talking - but by listening - before you 'judge' that which you are not qualified to judge.

I also strongly suggest you spend time reading more than just a few scientific studies on celestial effects on the Earth before you go around calling people like Ken Ring names.

At 29, you have much more to learn than you have up to this point. So let's not presume you are qualified as yet to put down that which you have obviously not studied yourself.

Nature includes all that is around you, including the heavens.

And remember, the Earth lives in space David, and is not flat.

Post a Comment